2020 Impact factor 3.911

News

EPJ Data Science appoints Dr. Ingmar Weber as co-Editor-in-Chief

Dr. Ingmar Weber

EPJ is pleased to announce that Dr Ingmar Weber of Qatar Computing Research Institute (QCRI) has been appointed as a co-Editor-in-Chief for EPJ Data Science, effective January 2021. He will be responsible for overseeing the editorial process of the journal, working closely with Prof Markus Strohmaier, who continues to serve as co-Editor-in-Chief. Ingmar Weber is the Research Director for Social Computing at QCRI where his research focuses on using social media and other non-traditional data to study phenomena such as international migration, digital gender gaps, and wealth inequalities. Of particular interest is how such data can be used to provide better statistics on global development and how, in turn, such statistics can be used for better interventions and policy decisions. This work is done in close collaboration with different United Nations entities and NGOs. Ingmar Weber currently serves as an ACM Distinguished Speaker and is a Senior Member of AAAI, IEEE, and ACM. He has been a member of the Editorial Board for EPJ Data Science since 2018.

EPJ WOC - EPJ WOC offers fast publication amongst many benefits – excellent performance in 2020

We are proud to highlight that EPJ Web of Conferences, the open access platform devoted to the publication of scientific conference proceedings, has received outstanding feedback from conference organisers regarding publication times in 2020. Indeed, for many, this is now one of the main reasons for choosing EPJ Web of Conferences.

We strive to publish proceedings quickly to enable the dissemination and discovery of research amongst the academic community. On average, we publish proceedings online within just 2 weeks for standard conferences and 3 to 4 weeks for larger conferences (involving around 200 papers). These are excellent turnaround times and a testament to our efficient processes, dedicated and responsive team, and understanding of our partners’ needs.

Read more...

EPJ D Highlight - Characterising cold fusion in 2D models

Mapping the probability of fusion

A new 2D modelling approach has been used to directly calculate how hydrogen nuclei fuse into helium after capturing muons

Progress towards ‘cold fusion,’ where nuclear fusion can occur at close to room temperatures, has now been at a standstill for decades. However, an increasing number of studies are now proposing that the reaction could be triggered more easily through a mechanism involving muons – elementary particles with the same charge as electrons, but with around 200 times their mass. Through a study published in EPJ D, researchers led by Francisco Caruso at the Brazilian Centre for Physical Research have shown theoretically how this process would unfold within 2D systems, without any need for approximations.

Read more...

EPJ A Highlight - Automated symmetry adaption in nuclear many-body theory

alt
Symmetry reduction process of a prototypical many-body expression leading to an equivalent symmetry-reduced form. Recoupling coefficients arising from the AMC program are shown in red.

The extreme cost of solving the A-nucleon Schrödinger equation can be minimized by leveraging rotational symmetry and, thus, enable the computation of observables in heavy nuclei and/or with high precision.

The associated reduction process, which amounts to re-expressing the working equations in terms of rotationally-invariant objects, requires lengthy symbolic manipulations of elaborate algebraic identities.

For the first time, this involved process is automated by a powerful graph-theory-based tool, the AMC code, which condenses months of error-prone derivations into a simple computational task performed within seconds.

The AMC program tightens the gap for a full automation of the many-body workflow, thereby lowering the time required to build and test novel quantum many-body formalisms.

EPJ E Highlight - Trapping nanoparticles with optical tweezers

Trapping fluorescent particles with Arago spots.

By exploiting a particular property of light diffraction at the interface between a glass and a liquid, researchers have demonstrated the first optical tweezers capable of trapping nanoscale particles.

Optical tweezers are a rapidly growing technology, and have opened up a wide variety of research applications in recent years. The devices operate by trapping particles at the focal points of tightly focused laser beams, allowing researchers to manipulate the objects without any physical contact. So far, optical tweezers have been used to confine objects just micrometres across – yet there is now a growing desire amongst researchers to extend the technology to nanometre-scale particles. In new research published in EPJ E, Janine Emile and Olivier Emile at the University of Rennes, France, demonstrate a novel tweezer design, which enabled them to trap fluorescent particles just 200 nanometres across for the first time.

Read more...

EPJ B Highlight - Predicting epilepsy from neural network models

Modelling complex branching in neural networks

Improved modelling techniques have enabled a group of researchers to better predict how damaging conditions in the brain can be triggered by complex dynamics in branching networks of neurons.

Within the staggeringly complex networks of neurons which make up our brains, electric currents display intricate dynamics in the electric currents they convey. To better understand how these networks behave, researchers in the past have developed models which aim to mimic their dynamics. In some rare circumstances, their results have indicated that ‘tipping points’ can occur, where the systems abruptly transition from one state to another: events now commonly thought to be associated with episodes of epilepsy. In a new study published in EPJ B, researchers led by Fahimeh Nazarimehr at the University of Technology, Tehran, Iran, show how these dangerous events can be better predicted by accounting for branches in networks of neurons.

Read more...

EPJ B Colloquium - A colloquium on the variational method applied to excitons in 2D materials

An interlayer exciton in a van der Waals heterostructure of 2D materials. The two stacked materials are different from each other and the electron and the hole rest in different layers.

Two-dimensional (2D) materials are condensed matter systems whose thickness varies from a single atom, as in graphene, to few atoms, as in transition metal dichalcogenides (TMDs). These exceedingly thin materials present, nevertheless, strong light-matter interaction.

Read more...

EPJ D Highlight - Optimising laser-driven electron acceleration

The net energy gain of electrons as a function of time with corresponding electron momentum (centre). E. Molnár, D. Stutman, C. Ticos (2020)

A new paper examines how tuning aspects of a powerful laser beam can affect the acceleration of electrons, attempting to find the recipe for maximum net energy gain.

The interaction between lasers and matter is at the forefront of new investigations into fundamental physics as well as forming a potential bedrock for new technological innovations. One of the initiatives spearheading this investigation is the Extreme Light Infrastructure Nuclear Physics (ELI-NP) project. Here the project’s High-Power Laser System (HPLS) — the world’s most powerful laser—is just one of the tools driving electron acceleration with lasers, Direct Laser Acceleration (DLA). In a new paper published in EPJ D, Etele Molnár, ELI-NP, Bucharest, and co-authors study and review the characteristics of electron acceleration in a vacuum caused by the highest-power laser pulses achievable today looking for the key to maximum net energy gain.

Read more...

EPJ C Highlight - Detecting solar neutrinos with the Borexino experiment

alt
Distribution of best-fit results of 210Bi and CNO neutrinos interaction rates obtained fitting thousands of simulated datasets under different assumptions of 210Bi backgrounds.

Neutrinos produced by the CNO cycle within the core of the Sun are being hunted by the Borexino experiment so that we may learn more about this important nuclear process.

Neutrinos are chargeless particles with about a mass about a millionth that of an electron that are created by the nuclear processes that occur in the Sun and other stars. These particles are often colourfully described as the ‘ghosts’ of the particle zoo because they interact so weakly with matter. A paper published in EPJ C by the Borexino collaboration – including XueFeng Ding, Postdoc Associate of Physics at Princeton University, United States – documents the attempts of the Borexino experiment to measure low-energy neutrinos from the Sun’s carbon-nitrogen-oxygen (CNO) cycle for the first time.

Read more...

EPJ Web of Conferences Highlight - CHEP2019: Computing in High Energy and Nuclear Physics

A snapshot of quantum field fluctuations present in the space-time vacuum that are experienced by quarks, the fundamental particles that constitute nuclear matter (here the gluonic topological charge density).

The CHEP conferences address the computing, networking and software issues for the world’s leading data‐intensive science experiments that currently analyse hundreds of petabytes of data using worldwide computing resources.

The 24th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2019), took place at the Adelaide Convention Centre in Adelaide, South Australia from 4–8 November 2019.

Read more...

Editor-in-Chief
Paolo Biscari
Excellent work! We are very satisfied.

Juan Cruz Moreno, Instituto de Física La Plata, Argentinia

ISSN: 2190-5444 (Electronic Edition)

© Società Italiana di Fisica and
Springer-Verlag