2017 Impact factor 2.240

EPJ N Highlight - Calculation of ion irradiation damage using Iradina code

Binary Collision Approximation (BCA) calculation allows for two types of damage calculation: Full Cascade and Quick Calculations. Full Cascade mode describes fully the cascades while in Quick Calculations only the trajectory of the ion is followed, and effective formulas give an estimation of the damage resulting from each collision of the ion. Quick Calculation of damage are implemented in the Iradina code both for elemental and multi-component solids. Good agreement is obtained with SRIM. It is shown that Quick Calculations are unphysical in multi-component systems. The choice between Full Cascade and Quick Calculations is discussed. It is advised in this paper to favour Full Cascade over Quick Calculation because it more grounded physically and applicable to all materials. Quick Calculations remain a good option for comparisons with former studies or for pure solids in the case of actual quantitative comparisons with neutron irradiations simulations in which damage levels are estimated with the NRT (Norgett-Robinson and Torrens) formulas.

Read more...

EPJ N Highlight - Novel approach for the study of reactive dissolution

Evolution of the projected area and associated perimeter of a uniformly dissolving particle

With the goal of understanding and modelling the reactive dissolution of solids, new microscopic methods have been developed for the investigations of the phenomena and kinetics of these reactions, and applied to the dissolution of uranium dioxide in nitric acid media.

The first paper presents a state of knowledge of the dissolution of uranium dioxide in nitric acid media. It highlights the numerous chemical and physico-chemical issues which still need to be addressed concerning its understanding, with a focus on autocatalysis, mass-transport and non-uniform attack of the solids.

Read more...

EPJ N Highlight - Recent progress in nuclear instrumentation and measurement

Plastic scintillators displaying different emission wavelengths (excitation with UV lamp; © CEA).

Plastic scintillators consist in one or several fluorescent probes embedded in a polymer matrix. They are able to produce light while interacting with a radioactive source. Recently, their technology has been modified by making them denser to improve their absorption while limiting the fluorescence quenching, leading to make them usable as pseudo-gamma spectrometers.

This is just an example of the numerous advances reported in a review based on four editions of the ANIMMA conferences (www.animma.com). This review is organized according to the measurement methodologies: neutronic, photonic, thermal, acoustic and optical, and includes medical imaging as well as progress in data acquisition and electronic hardening. Applications involve many fields like fundamental physics, fission and fusion reactors, medical imaging, environmental protection and homeland security, radioactive wastes measurement and control.

Read more...

Editor-in-Chief
Paolo Biscari
Thank you very much once again for your excellent work.

Ignazio Ciufolini, Università del Salento, Lecce, Italy

ISSN: 2190-5444 (Electronic Edition)

© Società Italiana di Fisica and
Springer-Verlag