EPJ Quantum Technology: New Review Article The Deep Space Quantum Link (DSQL)
- Details
- Published on 12 October 2022

Space-based quantum optical links support future networking applications for quantum sensing, quantum communications, and quantum information science. In addition, such links enable new scientific experiments impossible to reach in terrestrial experiments. The Deep Space Quantum Link (DSQL) is a spacecraft mission concept that aims to use extremely long-baseline quantum optical links to test fundamental quantum physics in novel special and general relativistic regimes.
In a new Review article just published in EPJ Quantum Technology, an international author team provide an overview of a two-year long study of how quantum optics in space could be used to conduct new tests of fundamental physics, in compliment to proposed tests utilizing matter or clocks. The manuscript describes the findings of the NASA-funded study, and describes some of the technology requirements and outstanding mission design studies necessary to move forward with the mission.
EPJ QT Highlight - Quantum control for advanced technology: Past and present
- Details
- Published on 29 July 2022

Quantum devices are a promising technological advance for the future, but this will hinge on the application of quantum optimal control top real-world devices. A new review looks at the status of the field as it stands.
One of the cornerstones of the implementation of quantum technology is the creation and manipulation of the shape of external fields that can optimise the performance of quantum devices. Known as quantum optimal control, this set of methods comprises a field that has rapidly evolved and expanded over recent years.
A new review paper published in EPJ Quantum Technology and authored by Christiane P. Koch, Dahlem Center for Complex Quantum Systems and Fachbereich Physik, Freie Universität Berlin along with colleagues from across Europe assesses recent progress in the understanding of the controllability of quantum systems as well as the application of quantum control to quantum technologies. As such, it lays out a potential roadmap for future technology.
EPJ QT Highlight - Steps towards post-quantum security by Aleksey Fedorov
- Details
- Published on 21 July 2021

Prof. Dr. Aleksey Fedorov is a Junior Principal Investigator at the Russian Quantum Center, Professor of Physics at Moscow Institute of Physics and Technology, and founder of startup companies in quantum technologies. His research is related to quantum information technologies and quantum many-body physics. His paper about world-first quantum-secured blockchain was covered in MIT Technology Review, Business Insider, Forbes and put in the list of "the hottest top 5%" of all research outputs by Altmetrics. Aleksey was selected for ’30-under-30’ for Forbes Russia.
Life in our society is suffused with information technologies. Many of our activities — ranging from online shopping and chatting to operating production environments and management systems — are based on collecting, processing, and transmitting data. One of the key aspects in this regard is security. Surely, the history of the problem of ensuring information security is virtually as long as human history. However, for modern society the issue of information security has become truly vital: unauthorized access to various kinds of information could lead to major losses, including financial losses and loss of reputation, for governments and businesses alike.
Continue reading Aleksey Fedorov’s post here.