News
EPJ B Colloquium - Heat flux anomaly at nanoscale
- Details
- Published on 21 October 2012
Nanomaterials are promising platforms for testing fundamental heat transport theories, according to a recent review outlining anomalous heat transport in nanometric scale materials.
The latest developments in experimental, theoretical and numerical studies of heat conduction have recently been published in EPJB. A review article by Singaporean and Chinese experts indicates that the standard laws governing conduction at macroscopic scale no longer apply in nanostructures. Instead, thermal conductivity is dependent on the material scale. Heat transport in nanoscale materials has implications in electronic, optoelectronic, and thermal devices.EPJ E Highlight - Self-forming biological scaffolding
- Details
- Published on 21 October 2012
A model system that can interpret the role of cross-linking proteins.
A new model system of the cellular skeletons of living cells is akin to a mini-laboratory designed to explore how the cells’ functional structures assemble. A paper just published in EPJ E by physicist Volker Schaller and his colleagues from the Technical University Munich, Germany, presents one hypothesis concerning self-organisation. It hinges on the findings that a homogeneous protein network, once subjected to stresses generated by molecular motors, compacts into highly condensed fibres.
EPJ E Colloquium – From shear banding to elastic turbulence
- Details
- Published on 21 October 2012
A new model provides an alternative description of atomic level gold bonding.
While simple Newtonian liquids are structured at the molecular scale, complex fluids are structured at the mesoscopic scale. Shear-banding is a ubiquitous phenomenon in complex fluids. It relates to the formation of regions (bands) with different fluidities and stacked along the velocity gradient direction. Shear banding is a transition towards a heterogeneous state induced by the flow itself. It’s been observed in many systems of practical relevance, including giant (wormlike) micelles, telechelic polymers, emulsions, clay suspensions, colloidal gels, star polymers, granular materials, or foams. Giant micelles, the subject of a recent EPJE Colloquium,EPJ B Highlight - Angling for gold
- Details
- Published on 21 October 2012
A new model provides an alternative description of atomic level gold bonding.
A study on how gold atoms bond to other atoms using a model that takes into account bonds direction has been carried out by physicist Marie Backman from the University of Helsinki, Finland, and colleagues. These findings, which have just been published in EPJB, are a first step toward better understanding how gold binds to other materials through strong, so-called covalent, bonds.
EPJ B Colloquium - Statistical physics for micro-scale fracture and plasticity
- Details
- Published on 21 October 2012
A review of recent successes and outstanding challenges for statistical physicists working on the mechanical properties of materials.
Most of the complexity in fracture and plasticity stems from the interplay between long-range elastic interactions and structural disorder. Statistical physicists have developed a full machinery of analytical and numerical methods to tackle these problems. Concepts drawn from percolation, fractal geometry, phase-transitions and interface depinning have been used, with varying degrees of success, to understand these problems. In this EPJB colloquium, Stefano Zapperi highlightsEPJ Plus Highlight – Statistical uncertainty in line shift and width interpretation
- Details
- Published on 21 October 2012
EPJ Data Science Highlight - Twitter data crunching: the new crystal ball
- Details
- Published on 21 October 2012
Scientists have devised a means to predict the outcome of election-based processes such as TV talent shows through the big data analysis of tweets.
Fabio Ciulla from Northeastern University, Boston, USA, and his colleagues demonstrated that the elimination of contestants in TV talent shows based on public voting, such as American Idol, can be anticipated. They unveiled the predictive power of microblogging Twitter signals—used as a proxy for the general preference of an audience—in a study recently published in EPJ Data Science.
EPJ D Highlight - Plasma screens enhanced as disorder strikes
- Details
- Published on 21 October 2012
Study looks at ways to improve the quality of matter akin to that found in plasma screens by dissolving its self-organised hexagonal filament structures made of electric discharge.
A new study improves our understanding of plasma sources, a state of matter similar to gas in which a certain portion of the particles are ionised and which are used for example in plasma display panels. These results revealed by physicists from the University of Greifswald, Germany, Robert Wild and Lars Stollenwerk, and are about to be published in EPJD.
EPJ B News – Topical issue on GW Calculations for Complex Systems
- Details
- Published on 21 October 2012
The GW method is emerging as a conceptual and computational platform for developing increasingly more accurate descriptions of electronic excitations. Guest editors Feliciano Giustino, Paolo Umari and Angel Rubio hope that the new EPJB topical issue on the Challenges and Solutions in GW Calculations for Complex Systems will provide an exciting perspective on the state-of-the-art in this fascinating research area, and encourage new developments in view of addressing the widest range of materials. The papers in this topical issue will be free to access through the end of November 2012.
EPJ D Highlight - Hi-fi single photons
- Details
- Published on 21 October 2012
A trade-off between photon source settings and detector specific requirements allows the generation of high-fidelity single photons.
Many quantum technologies—such as cryptography, quantum computing and quantum networks—hinge on the use of single photons. While she was at the Kastler Brossel Laboratory (affiliated with the Pierre and Marie Curie University, École Normale Supérieure and CNRS) in Paris, France, Virginia d’Auria and her colleagues identified the extent to which photon detector characteristics shape the preparation of a photon source designed to reliably generate single photons. In a paper just published