https://doi.org/10.1140/epjp/s13360-024-05177-0
Regular Article
Molecular dynamics exploration of the temperature-dependent elastic, mechanical, and anisotropic properties of hcp ruthenium
1
Department of Physics, Ankara Hacı Bayram Veli University, 06900, Ankara, Turkey
2
Department of Physics, Gazi University, 06500, Ankara, Turkey
Received:
22
March
2024
Accepted:
12
April
2024
Published online:
2
May
2024
Molecular dynamics calculations were performed for the hitherto unclarified temperature-dependent elastic, mechanical, and anisotropic properties of the hexagonal closed pack (hcp) ruthenium (Ru) between 0 and 1200 K. All elastic stiffness constants were found to decrease with increasing temperature. Under the examined temperature range, hcp Ru obeys Born stability conditions. Further, both Pugh ratio analyses and calculated Poisson ratio values mutually suggest the brittle character of hcp Ru between 0 and 1200 K. The intricate hardness behavior of hcp Ru was also obtained and discussed throughout the work. For the considered temperature range, hcp Ru exhibits apparent elastic anisotropy that exponentially increases with increasing temperature. Moreover, presently obtained ground state (T = 0 K and P = 0 GPa) theoretical data for hcp Ru agree well with the former experimental and theoretical data. The present findings on the temperature-dependent characteristics of this metal may further inspire future applied works.
© The Author(s) 2024
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.