https://doi.org/10.1140/epjp/i2018-12086-x
Regular Article
Exciton-polariton soliton wavetrains in molecular crystals with dispersive long-range intermolecular interactions
Laboratory of Research on Advanced Materials and Nonlinear Sciences (LaRAMaNS), Department of Physics, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon
* e-mail: dikande.alain@ubuea.cm
Received:
6
April
2018
Accepted:
2
June
2018
Published online:
19
July
2018
The peculiar crystal structure of one-dimensional molecular solids originates from packing of an array of molecules in which intermolecular interactions are dominantly dispersive, including hydrogen-bond, van der Waals and London-type forces. These forces are usually relatively weaker than covalent and ionic bondings, such that long-range intermolecular interactions should play an important role in dispersion properties of molecular crystals, such as polymers and biomolecular chain structures. In this work the effects of long- but finite-range intermolecular interactions on single-exciton dispersion energy, and hence on the characteristic parameters of periodic soliton trains associated with bound exciton-polariton states in one-dimensional molecular crystals interacting with an electromagnetic field, are investigated. Long-range interactions are shown to quantitatively modify the exciton-polariton soliton amplitudes, width and velocity as a result of shrinkage of the single-exciton energy spectrum. The soliton structures of interest are nonlinear wavetrains, consisting of periodically ordered single-pulse (i.e. bright) or single-kink (i.e. dark) solitons with equal separation between the constituent single-soliton modes. Periodic soliton structures are relevant and best suited for finite-size chain systems, where periodic boundary conditions rule the generation of nonlinear wave profiles. Generally they are of weaker nonlinearity compared to their single-soliton constituents as is well established within the framework of their generation via the process of modulational instability.
© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature, 2018