2018 Impact factor 2.612

EPJ TI Review - Trapping Molecules on Chips


In recent years, it has been demonstrated that neutral molecules can be loaded on a microchip directly from a supersonic beam. The molecules are confined in microscopic traps that can be moved smoothly over the surface of the chip. Once the molecules are trapped, they can be decelerated to a standstill, for instance, or pumped into selected quantum states by laser light or microwaves. Molecules are detected on the chip by time-resolved spatial imaging, which allows for the study of the distribution in the phase space of the molecular ensemble.

In this Tutorial Review article, part of the thematic series for Methods for Cold Molecules and Ions, the author introduces the techniques used to trap cold molecules on microchips, and reviews some of the recent developments in this field. First, the essential features of microchip design and the necessary experimental setup are described. Then, the problem of nonadiabatic losses from the microtraps is addressed and the most viable solutions are presented. Further, some recent results on state transition of trapped molecules are presented, involving rotational and vibrational transitions. And finally, on-chip detection and imaging is briefly discussed.

Santambrogio, G. (2015), Trapping molecules on chips, EPJ Techniques and Instrumentation, 2:14, DOI: 10.1140/epjti/s40485-015-0024-8

Paolo Biscari
On behalf of all my colleagues and me, I really appreciate the quick and precise editorial process on this paper. That made our work much better, which assisted us in achieving our goal.

Farnaz Foadi, Plasma Physics Research Center, Islamic Azad University, Tehran, Iran

ISSN: 2190-5444 (Electronic Edition)

© Società Italiana di Fisica and