2022 Impact factor 3.4

EPJ Plus Focus Point on Uncertainty Quantification of Modelling and Simulation in Physics and Related Areas: From Theoretical to Computational Techniques

Guest Editors: Juan Carlos Cortés, Tomás Caraballo, Carla M.A. Pinto

The main goal of this topical article collection is to present new advances on theoretical and computational techniques for uncertainty quantification of modelling and simulation in relevant problems appearing in physics sciences. Many important laws in Physics are formulated by means of equations -mainly differential equations- whose input data is set after experimental measurements, therefore containing uncertainties. Apart from this fact, there often are model parameters whose nature is not known deterministically but randomly because of ignorance and inherent complexity of the physical phenomenon under study. This approach motivates the necessity of treating classical equations in Physics by considering uncertainties in their formulations. This approach is currently a cutting-edge topic whose rigorous analysis requires to masterly combine Physics, Probability and Computing, not just to solve exact or numerically the corresponding equations but also to correctly estimate model parameters, perform accurate simulations and interpret the results.

All articles are available here and are freely accessible until 16 March 2023. For further information, read the Editorial.

B. Fraboni and G. García López
Thank you very much once again for your excellent work.

Ignazio Ciufolini, Università del Salento, Lecce, Italy

ISSN: 2190-5444 (Electronic Edition)

© Società Italiana di Fisica and