EPJ D Highlight - Plasma screens enhanced as disorder strikes
- Details
- Published on 21 October 2012

Study looks at ways to improve the quality of matter akin to that found in plasma screens by dissolving its self-organised hexagonal filament structures made of electric discharge.
A new study improves our understanding of plasma sources, a state of matter similar to gas in which a certain portion of the particles are ionised and which are used for example in plasma display panels. These results revealed by physicists from the University of Greifswald, Germany, Robert Wild and Lars Stollenwerk, and are about to be published in EPJD.
EPJ D Highlight - Hi-fi single photons
- Details
- Published on 21 October 2012

A trade-off between photon source settings and detector specific requirements allows the generation of high-fidelity single photons.
Many quantum technologies—such as cryptography, quantum computing and quantum networks—hinge on the use of single photons. While she was at the Kastler Brossel Laboratory (affiliated with the Pierre and Marie Curie University, École Normale Supérieure and CNRS) in Paris, France, Virginia d’Auria and her colleagues identified the extent to which photon detector characteristics shape the preparation of a photon source designed to reliably generate single photons. In a paper just publishedEPJ D - Disentangling information from photons
- Details
- Published on 10 August 2012

Study describes greater chances of accessing more reliable information on applications in quantum computing and cryptography.
Theoretical physicist Filippo Miatto and colleagues from the University of Strathclyde, Glasgow, UK, have found a new method of reliably assessing the information contained in photon pairs used for applications in cryptography and quantum computing. The findings, published in EPJD, are so robust that they enable access to the information even when the measurements on photon pairs are imperfect.
EPJ D - Solitary waves induce waveguide that can split light beams
- Details
- Published on 10 August 2012

A Chinese team has performed simulations to help understand the occurrence of multiple solitary optical waves that are used to reconfigure optical beams.
Researchers have designed the first theoretical model that describes the occurrence of multiple solitary optical waves, referred to as dark photovoltaic spatial solitons.
EPJ D - Largest ever gas mix caught in ultra-freeze trap
- Details
- Published on 10 August 2012

Towards a better understanding of subatomic particles using a new cold-atom setup
A team of scientists have made it easier to study atomic or subatomic-scale properties of the building blocks of matter (which also include protons, neutrons and electrons) known as fermions by slowing down the movement of a large quantity of gaseous atoms at ultra-low temperature. This is according to a study recently published in EPJ D as part of a cold quantum matter special issue, by researchers from the Paris-based École Normale Supérieure and the Non-Linear Institute at Nice Sophia-Antipolis University in France.
EPJ D - Instant nanodots grow on silicon to form sensing array
- Details
- Published on 10 August 2012

New methods for creating 3D nanostructures deposited on an array of regularly spaced indentations on the surface of silicon films opens the door for innovative nanosensors
Scientists have shown that it is now possible to simultaneously create highly reproductive three-dimensional silicon oxide nanodots on micrometric scale silicon films in only a few seconds. Xavier Landreau and his colleagues at the University of Limoges, France, demonstrated in their paper published in EPJ D that they were able to create a square array of such nanodots, using regularly spaced nanoindents on the deposition layer, that could ultimately find applications as biosensors for genomics or bio-diagnostics.
EPJ D - Not one, not two, not three, but four clones!
- Details
- Published on 10 August 2012

First quantum cloning machine to produce four copies
Xi-Jun Ren and Yang Xiang from Henan Universities in China, in collaboration with Heng Fan at the Institute of Physics of the Chinese Academy of Sciences, have produced a theory for a quantum cloning machine able to produce several copies of the state of a particle at atomic or sub-atomic scale, or quantum state, in an article published in EPJ D. This could have implications for quantum information processing methods used, for example, in message encryption systems.EPJ D - Quantum teleportation analysed by mathematical separation tool
- Details
- Published on 15 September 2011

Scientists from the University of Vienna’s Faculty of Physics in Austria recently gave a theoretical description of teleportation phenomena in sub-atomic scale physical systems, in a publication in the European Physical Journal D.
For the first time, the Austrian team proved that mathematical tools give us the freedom to choose how to separate out the constituting matter of a complex physical system by selectively analysing its so-called quantum state. That is the state in which the system is found when performing measurement, which can either be entangled or not.
EPJ D - Speedier Quantum Logic
- Details
- Published on 16 May 2011

Quantum information processing requires logical operations with multiple quantum bits. One route to this goal is controlling each qubit with a time-dependent external magnetic field. In this recent paper published in EPJ D, Heule et al. describe ways to perform logical operations on an ENTIRE superconducting qubit chain by controlling just ONE of the end qubits of the chain.
EPJ D - 'Measurement of Quantum Mechanical Operators' Revisited
- Details
- Published on 31 March 2011
Quantum mechanical measurements are often assumed to be accurate and repeatable. However, due to a fundamental result of Wigner (1952) and Araki and Yanase (1961), we now know that there are limitations to these properties in the presence of aconserved quantity that does not commute with the observable to be measured. Despite its importance and impact on quantum technologies, the full scope of this so-called WAY theorem has remained unclear.