2024 Impact factor 2.9

EPJ D Colloquium - Modelling low energy electron and positron tracks in biologically relevant media

alt
An example of single electron tracks simulation in liquid water.

This EPJD colloquium describes an approach whereby the effect of low and intermediate energy (0-100 eV) electrons and positrons can be incorporated into radiation damage models, in particular the deceleration of these particles in biologically-relevant materials (water and representative biomolecules). At the heart of the modelling procedure is a C++ computer program called Low Energy Particle Track Simulation (LEPTS), which is compatible with commonly available general purpose Monte Carlo packages. Input parameters are carefully selected from theoretical and experimental cross-section data and energy loss distribution functions.

The data sources used for this purpose are reviewed, and examples of electron and positron cross-section and energy loss data for interactions with different media of increasing complexity (atoms, molecules, clusters and condensed matter) are presented. Finally, the authors show how such a model can be used to develop an effective dosimetric tool at the molecular level (i.e. nanodosimetry). Recent experimental developments in the study of molecular fragmentation induced by charge transfer from neutrals and negative ions in biological materials are also discussed.

Modelling low energy electron and positron tracks in biologically relevant media. Francisco Blanco, Antonio Munoz, Diogo Almeida, Filipe Ferreira da Silva, Paulo Limao-Vieira, Martina C. Fuss, Ana G. Sanz, and Gustavo García (2013) Eur.Phys. J. D, DOI: 10.1140/epjd/e2013-40276-1

Editors-in-Chief
B. Fraboni and G. García López
It is a great pleasure to receive your message regarding the acceptance of our manuscript for publication in EPJPlus. We deeply appreciate the quick review of the manuscript and sincerely thank you and others in the EPJP Editorial Office. We would also like to extend our appreciation to the referee for his positive review and his nice words.

Kourosh Afrousheh, Safat, Kuwait

ISSN: 2190-5444 (Electronic Edition)

© Società Italiana di Fisica and
Springer-Verlag