2023 Impact factor 2.8

EPJ AP Highlight - Silicon Plasma Wave Receiver for Terahertz Wireless Communication

The signal to noise ratio (SNR) of the Si-CMOS receiver versus modulation frequency of the 300GHz carrier. The inset shows the block diagram with the main components: the patch antenna, the plasma wave FET, with schematically shown damped plasma oscillations, and the integrated wide-band amplifiers chain.

This paper presents the design, manufacturing and characterization of an integrated circuit (IC) that uses the plasma oscillations phenomena in silicon nanotransistors (Si-CMOS) for the detection of a 300 GHz-carrier-frequency wireless signal. We present the strategies for a Si-CMOS-based, wideband, integrated circuit receiver comprising: (i) a physics based, specific plasma-wave-transistor design, allowing impedance matching to the antenna and the amplifier, (ii) a patch antenna engineered through a stacked resonator approach and (iii) a broadband amplifier that uses bandwidth enhancement circuit techniques.

The receiver rectifies a 300 GHz carrier frequency, with a flat and very wideband response, up to10 GHz. This is, to the best of our knowledge, the first demonstration of a low cost 130 nm Si-CMOS technology, plasma wave transistors based, fast and wideband integrated circuit receiver operating at 300 GHz atmospheric window. The results pave the way towards future large scale, and cost effective silicon-technology based, high data bit rate, terahertz wireless communication receivers.

Wide modulation bandwidth terahertz detection in 130 nm CMOS technology, Shamsun Nahar, Marwah Shafee, Stéphane Blin, Annick Pénarier, Philippe Nouvel, Dominique Coquillat, Amr M.E. Safwa, Wojciech Knap and Mona M. Hella (2016), Eur. Phys. J. Appl. Phys., 76: 20101, DOI 10.1051/epjap/2016160302

Editors-in-Chief
B. Fraboni and G. García López
The typing and the arrangement of tables and figures are perfect. Also, corrections to English and bibliography were appropriate. All together there is no correction to be made and I thank you for the excellent work. I would also thank you for the kind promptness in delivering the proofs.

Maurizio Consoli, Istituto Nazionale di Fisica Nucleare - Sezione di Catania, Italy

ISSN: 2190-5444 (Electronic Edition)

© Società Italiana di Fisica and
Springer-Verlag