2018 Impact factor 2.612

EPJ A Highlight - Confirming the validity of the Silver-Blaze property for QCD at finite chemical potential

alt
Sketch of the QCD phase diagram in the temperature and baryon chemical potential plane.

The properties of the theory of strong interactions, QCD, at finite chemical potential are of great interest for at least two reasons: (i) model studies suggest a potentially rich landscape of different phases with highly interesting analogies to those found in solid state physics; (ii) the resulting thermodynamic properties have far reaching consequences for the physics of neutron stars and neutron star mergers.

Investigating the properties of light scalar and pseudo-scalar quark-antiquark bound states at finite chemical potential by solving coupled sets of Dyson-Schwinger equations, the meson masses, wave functions, and decay constants are computed, as well as changes in the quark dressing functions for chemical potentials below the first-order chiral phase transition while tracing charge-conjugation parity breaking.

Eventually, we confirm the validity of the Silver-Blaze property: in observables all dependencies of colored quantities (propagators, wave-functions, etc.) on chemical potential cancel out and we observe constant masses and decay constants up to and into the coexistence region of the first-order chiral phase transition.

Editor-in-Chief
Paolo Biscari
Excellent work! We are very satisfied.

Juan Cruz Moreno, Instituto de Física La Plata, Argentinia

ISSN: 2190-5444 (Electronic Edition)

© Società Italiana di Fisica and
Springer-Verlag