https://doi.org/10.1140/epjp/s13360-024-05776-x
Regular Article
Optimization of the positron emission tomography image resolution by using quantum entanglement concept
Amirkabir University of Technology, No. 350, Hafez Ave, 1591634311, Tehran, Iran
Received:
28
September
2023
Accepted:
26
October
2024
Published online:
6
November
2024
The application of quantum entanglement in the analysis of photons in PET imaging systems has the potential to significantly improve image quality. By acquiring additional information beyond the conventional PET system data, the polarization of coincidence photons reaching the detectors can optimally separate correct and incorrect received data. Since these photons are entangled, measuring their polarization can provide new information about related photon pairs, or true events. In this research, we demonstrate the potential for using the polarization of entangled photons to improve the image quality of PET imaging systems. We first investigate the theory of Compton scattering of 511 keV gamma photons resulting from positron annihilation using the GEANT4 object-oriented tool. Next, we survey the possibility of using quantum entanglement in a Compton PET system. We then develop new source code in the GATE program to design a new system capable of detecting the polarization of 511 keV gamma photons resulting from positron annihilation, which was not previously possible in this software. This adds a new feature to the GAET software. Finally, we compare the reconstructed images from the new proposed system and conventional PET systems, illustrating a significant enhancement in image quality.
Copyright comment Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
© The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.