https://doi.org/10.1140/epjp/s13360-024-05704-z
Regular Article
Analysis of reactor burnup simulation uncertainties for antineutrino spectrum prediction
1
INFN, Sezione di Milano Bicocca e Dipartimento di Fisica, Università di Milano-Bicocca, Milano, Italy
2
INFN, Sezione di Milano Bicocca e Dipartimento di Energia, Politecnico di Milano, Milan, Italy
3
INFN, Sezione di Catania e Università di Catania, Dipartimento di Fisica e Astronomia, Catania, Italy
4
INFN, Sezione di Milano e Università degli studi di Milano, Dipartimento di Fisica, Milan, Italy
5
INFN, Sezione di Padova e Università di Padova, Dipartimento di Fisica e Astronomia, Padova, Italy
6
INFN, Sezione di Roma 3 e Università degli Studi di Roma Tre, Dipartimento di Fisica e Matematica, Rome, Italy
7
INFN, Sezione di Perugia e Università degli Studi di Perugia, Dipartimento di Chimica, Biologia e Biotecnologie, Perugia, Italy
8
Laboratori Nazionali dell’INFN di Frascati, Frascati, Italy
9
INFN, Sezione di Ferrara, Ferrara, Italy
10
Dipartimento di Fisica e Scienze della Terra, Universitá degli Studi di Ferrara, Ferrara, Italy
Received:
5
March
2024
Accepted:
25
September
2024
Published online:
29
October
2024
Nuclear reactors are a source of electron antineutrinos due to the presence of unstable fission products that undergo decay. They will be exploited by the JUNO experiment to determine the neutrino mass ordering and to get very precise measurements of the neutrino oscillation parameters. This requires the reactor antineutrino spectrum to be characterized as precisely as possible both through high-resolution measurements, as foreseen by the TAO experiment, and detailed simulation models. In this paper, we present a benchmark analysis utilizing Serpent Monte Carlo simulations in comparison with real pressurized water reactor spent fuel data. Our objective is to study the accuracy of fission fraction predictions as a function of different reactor simulation approximations. Then, using the BetaShape software, we construct reactor antineutrino spectrum using the summation method, thereby assessing the influence of simulation uncertainties on it.
Copyright comment Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
© The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.