https://doi.org/10.1140/epjp/s13360-023-04750-3
Regular Article
Kinetic theory of inhomogeneous systems with long-range interactions and fluctuation–dissipation theorem
Laboratoire de Physique Théorique, CNRS, UPS, Université de Toulouse, Toulouse, France
Received:
18
August
2023
Accepted:
27
November
2023
Published online:
16
January
2024
We complete the kinetic theory of inhomogeneous systems with long-range interactions initiated in previous works. We use a simpler and more physical formalism. We consider a system of particles submitted to a small external stochastic perturbation and determine the response of the system to the perturbation. We derive the diffusion tensor and the friction by polarization of a test particle. We introduce a general Fokker–Planck equation involving a diffusion term and a friction term. When the friction by polarization can be neglected, we obtain a secular dressed diffusion equation sourced by the external noise. When the external perturbation is created by a discrete collection of N field particles, we obtain the inhomogeneous Lenard–Balescu kinetic equation reducing to the inhomogeneous Landau kinetic equation when collective effects are neglected. We consider a multi-species system of particles. When the field particles are at statistical equilibrium (thermal bath), we establish the proper expression of the fluctuation–dissipation theorem for systems with long-range interactions relating the power spectrum of the fluctuations to the response function of the system. In that case, the friction and diffusion coefficients satisfy the Einstein relation and the Fokker–Planck equation reduces to the inhomogeneous Kramers equation. We also consider a gas of Brownian particles with long-range interactions described by N coupled stochastic Langevin equations and determine its mean and mesoscopic evolution. We discuss the notion of stochastic kinetic equations and the role of fluctuations possibly triggering random transitions from one equilibrium state to the other. Our presentation parallels the one given for the kinetic theory of two-dimensional point vortices in a previous paper (Chavanis in Eur Phys J Plus 138:136, 2023).
Copyright comment Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
© The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.