https://doi.org/10.1140/epjp/s13360-023-04359-6
Regular Article
Arbitrary amplitude dust–ion acoustic nonlinear and supernonlinear wave structures in a magnetized five components plasma
1
Department of Mathematics, Jadavpur University, 188, Raja S. C. Mallick Road, 700032, Kolkata, West Bengal, India
2
Division of Mathematics, Vellor Institute of Technology, Vandalur-Kelambakkam Road, 600127, Chennai, Tamilnadu, India
3
Department of Mathematics, Guru Ghasidas Vishwavidyalaya, Koni, 495009, Bilaspur, Chhattisgarh, India
Received:
9
March
2023
Accepted:
7
August
2023
Published online:
22
August
2023
We have applied the Sagdeev pseudo-potential approach and phase portrait analysis to confirm the existence of different dust-ion acoustic (DIA) nonlinear wave structures in a collisionless magnetized plasma. The constituents of the present magnetized plasma are negative immobile dust particulates, non-isothermal positrons, nonthermal electrons, isothermal electrons and adiabatic warm ions. The plasma system contains eleven parameters and the nonlinear waves have been studied through the compositional parameter spaces consisting of these eleven parameters. The effects of these parameters on the amplitude of the nonlinear wave structures have also been investigated. We have extensively discussed the existence of negative potential solitary waves (NPSWs), positive potential solitary waves (PPSWs), positive potential supersolitons (PPSSs), negative potential double layers (NPDL) and supernonlinear periodic waves. We have also analysed the coexistence of PPSWs and NPSWs, coexistence of NPSWs and PPSSs, coexistence of NPDL and PPSSs. For the increasing value of any one of the parameters ,
and
, there exists a sequence of NPSWs converging to the double layer solution of the same polarity, whereas it is observed that a sequence of NPSWs converging to the double layer solution for decreasing value of any one of the parameters
,
and
. Therefore, the amplitude of the NPDL solution can be regarded as an upper bound of the amplitude of the sequence of the NPSWs. The dependence of the amplitudes of the PPSWs and PPSSs on the different parameters of the system has also been critically investigated.
Copyright comment Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
© The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.