https://doi.org/10.1140/epjp/s13360-023-03855-z
Regular Article
Three types of Landauer’s erasure principle: a microscopic view
1
Departament d’Enginyeria Electrònica, Universitat Autònoma de Barcelona, Edifici QC, Cerdanyola del Vallès, 08193, Barcelona, Spain
2
Theoretical Physics Division, Rudjer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia
Received:
3
October
2022
Accepted:
2
March
2023
Published online:
16
March
2023
An important step to incorporate information in the second law of thermodynamics was done by Landauer, showing that the erasure of information implies an increase in heat. Most attempts to justify Landauer’s erasure principle are based on thermodynamic argumentations. Here, using just the time-reversibility of classical microscopic laws, we identify three types of the Landauer’s erasure principle depending on the relation between the two final environments: the one linked to a logical input 1 and the other to logical input 0. The strong type (which is the original Landauer’s formulation) requires the final environments to be in thermal equilibrium. The intermediate type giving the entropy change of occurs when the two final environments are identical macroscopic states. Finally, the weak Landauer’s principle, providing information erasure with no entropy change, when the two final environments are macroscopically different. Even though the above results are formally valid for classical erasure gates, a discussion on their natural extension to quantum scenarios is presented. This paper strongly suggests that the original Landauer’s principle (based on the assumption of thermalized environments) is fully reasonable for microelectronics, but it becomes less reasonable for future few-atoms devices working at THz frequencies. Thus, the weak and intermediate Landauer’s principles, where the erasure of information is not necessarily linked to heat dissipation, are worth investigating.
Xavier Oriols and Hrvoje Nikolić have contributed equally to this work.
© The Author(s) 2023
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.