https://doi.org/10.1140/epjp/s13360-023-03797-6
Review
The value of FDG-PET/CT imaging in the assessment, monitoring, and management of COVID-19
1
Drexel University College of Medicine, Philadelphia, PA, USA
2
Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
3
Division of Radiology and Nuclear Medicine, Oslo University Hospital, Postbox 4950, 0424, Nydalen, Oslo, Norway
4
Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Postbox 1078, 0316, Blindern, Oslo, Norway
5
The Intervention Center, Division of Technology and Innovation, Oslo University Hospital, Postbox 4950, 0424, Oslo, Norway
d m.erootwelt-revheim@medisin.uio.no, monar@ous-hf.no
Received:
22
March
2022
Accepted:
11
February
2023
Published online:
27
March
2023
The pathogenesis of Coronavirus Disease 2019 (COVID-19) involves cytokine-driven recruitment and accumulation of inflammatory cells at sites of infection. These activated neutrophils, monocytes, and effector T cells are highly glycolytic and thus appear as [18]F-labeled fluorodeoxyglucose (FDG) avid sites on positron emission tomography (PET) imaging. FDG-PET-computed tomography (FDG-PET/CT) is a highly sensitive modality for the detection, monitoring, and assessing response related to COVID-19 disease activity that holds significant clinical relevance. To date, concerns over cost, access, and undue radiation exposure have limited the use of FDG-PET/CT in COVID-19 to a small number of individuals where PET-based interventions were already indicated. In this review, we summarize the existing literature on the use of FDG-PET in the detection and monitoring of COVID-19 with particular focus on several areas of clinical relevance that warrant future research: (1) incidental early detection of subclinical COVID-19 in patients who have undergone FDG-PET for other underlying diseases, (2) standardized quantitative assessment of COVID-19 disease burden at specific points in time, and (3) analysis of FDG-PET/CT data leading to better characterization of COVID-19 pathogenesis. Employing FDG-PET/CT for these purposes may allow for the earliest detection of COVID-19-associated venous thromboembolism (VTE), standardized monitoring of disease progression and response to treatment, and better characterization of the acute and chronic complications of this disease.
Focus Point on Progress in Medical Physics in Times of CoViD-19 and Related Inflammatory Diseases. Guest editors: E. Cisbani, S. Majewski, A. Gori, F. Garibaldi.
© The Author(s) 2023
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.