https://doi.org/10.1140/epjp/s13360-022-03109-4
Regular Article
Generation and propagation dynamics of a controllable hollow Airy–Gaussian vortex beam
Department of Applied Physics, East China Jiaotong University, 330013, Nanchang, China
Received:
18
March
2022
Accepted:
25
July
2022
Published online:
6
August
2022
In this paper, a new method for generating a controllable hollow Airy–Gaussian vortex beam (CHAGVB) by implanting a cubic phase and an orbital angular momentum (OAM) on a hollow Gaussian beam (HGB) is proposed. To realize this method, we first encode a cubic helical phase mask on the spatial light modulator (SLM) and perform a two-dimensional Fourier transform (FT) on the incident light beam reflected by the SLM screen, and then, a CHAGVB would be produced on the FT output plane. The general analytical expression of the CHAGVB is derived, with which the propagation dynamics of several representative modes are investigated. Besides, the intensity profiles, phase distributions, Poynting vector and the orbital angular momentum density corresponding to the vectorial optical vortex structure are elucidated graphically. Results indicate that it is convenient to realize the model transformation upon Gaussian beams, optical vortices, Airy beams and their combinations by adjusting the relative parameters, including the order n of the incident beam, the topological charge (TC) m, and the control parameters α and β of the phase mask. The main lobe of the CHAGVB will be destroyed when propagating in the near zone. Being embedded with optical vortices, the intensity distribution of the CHAGVB shows some new characteristics that more energy and OAM are concentrated on the main lobe of the CHAGVB, which leads to better self-healing. It is also demonstrated that a beam carrying optical vortices possesses better propagation stability within several Rayleigh distances. The results obtained here may further expand the applications of hybrid vortex beams in optical micro-manipulation and light-sheet microscopy.
Copyright comment Springer Nature oder sein Lizenzgeber hält die ausschließlichen Nutzungsrechte an diesem Artikel kraft eines Verlagsvertrags mit dem/den Autor*in(nen) oder anderen Rechteinhaber*in(nen); die Selbstarchivierung der akzeptierten Manuskriptversion dieses Artikels durch Autor*in(nen) unterliegt ausschließlich den Bedingungen dieses Verlagsvertrags und dem geltenden Recht.
© The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature oder sein Lizenzgeber hält die ausschließlichen Nutzungsrechte an diesem Artikel kraft eines Verlagsvertrags mit dem/den Autor*in(nen) oder anderen Rechteinhaber*in(nen); die Selbstarchivierung der akzeptierten Manuskriptversion dieses Artikels durch Autor*in(nen) unterliegt ausschließlich den Bedingungen dieses Verlagsvertrags und dem geltenden Recht.