https://doi.org/10.1140/epjp/s13360-021-02141-0
Regular Article
Exploring requirements and detector solutions for FCC-ee
1
INFN, Sezione di Padova, Padova, Italy
2
EP Department, CERN, Geneva, Switzerland
Received:
16
May
2021
Accepted:
4
November
2021
Published online:
30
November
2021
Circular colliders have the advantage of delivering collisions to multiple interaction points, which allow different detector designs to be studied and optimised—up to four for FCC-ee. On the one hand, the detectors must satisfy the constraints imposed by the invasive interaction region layout. On the other hand, the performance of heavy-flavour tagging, of particle identification, of tracking and particle-flow reconstruction, and of lepton, jet, missing energy and angular resolution, need to match the physics programme and the exquisite statistical precision offered by FCC-ee. During the FCC feasibility study (2021–2025), benchmark physics processes will be used to determine, via appropriate simulations, the requirements on the detector performance or design that must be satisfied to ensure that the systematic uncertainties of the measurements are commensurate with their statistical precision. The usage of the data themselves, in order to reach the challenging goals on the stability and on the alignment of the detector, in particular for the programme at and around the Z peak, will also be studied. In addition, the potential for discovering very weakly coupled new particles, in decays of Z or Higgs bosons, could motivate dedicated detector designs that would increase the efficiency for reconstructing the unusual signatures of such processes. These studies are crucial input to the further optimisation of the two concepts described in the FCC-ee conceptual design report, CLD and IDEA, and to the development of new concepts which might actually prove to be better adapted to the FCC-ee physics programme, or parts thereof.
The original online version of this article was revised to add additional funding.
A correction to this article is available online at https://doi.org/10.1140/epjp/s13360-022-02959-2.
Copyright comment corrected publication 2022
© The Author(s) 2021. corrected publication 2022
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.