2018 Impact factor 2.612

EPJ QT Highlight - How does Earth’s spacetime deformation affect quantum communications?

Credit: CQT, National University of Singapore

Jan Kohlrus investigates relativitic effects to consider when setting up quantum communication systems.

The interplay and overlap between relativity and quantum theory are among the most complex and challenging open problems of modern theoretical physics. This grey area has been extensively studied on the theoretical side, sometimes following very speculative and exotic directions, while very few experiments have been proposed in a way that rigorously incorporates relativity and quantum features.

The purpose of our work is to propose feasible experiments that involve quantum fields in a relativistic framework. In our recent article in EPJ Quantum Technology, we study how observers that undergo different motion, and experience different strengths of the gravitational field, measure pulses of light that propagate from one user to another. In particular, we look at quantum communication schemes between Earth and satellite links, as well as between two satellites.

Continue reading Jan’s post here.

Paolo Biscari
It is a great pleasure to receive your message regarding the acceptance of our manuscript for publication in EPJPlus. We deeply appreciate the quick review of the manuscript and sincerely thank you and others in the EPJP Editorial Office. We would also like to extend our appreciation to the referee for his positive review and his nice words.

Kourosh Afrousheh, Safat, Kuwait

ISSN: 2190-5444 (Electronic Edition)

© Società Italiana di Fisica and