https://doi.org/10.1140/epjp/s13360-025-06071-z
Regular Article
The four-wave mixing (FWM) in a five-level atomic system driven by magnetic field
Department of Physics, University of Shanghai for Science and Technology, 200093, Shanghai, China
Received:
27
June
2024
Accepted:
2
February
2025
Published online:
18
February
2025
We present a scheme to demonstrate the manipulation of spatially dependent four-wave mixing (FWM) in a five-level atomic system controlled by an external magnetic field. The propagation of the FWM field in a five-level atomic system is investigated using a dynamic model based on the Maxwell equation, and an analytical solution for FWM is derived via the Fourier transform. Our results show a significant phase twist symmetry of the FWM field resulting from the external magnetic field, and there is no spatial phase twists or absorption at the symmetric points. Notably, in response to an external magnetic field, the peak conversion efficiency of FMW occurs at symmetrical points where the FWM phase twist direction changes symmetrically with the magnetic field. In addition, it is found that increasing vortex pump intensity or adjusting the control field power may enhance FWM conversion efficiency. Our findings have potential applications in magnetic detection and contribute to an extensive awareness of nonlinear phenomena in the atomic system.
Copyright comment Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
© The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2025
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.