https://doi.org/10.1140/epjp/s13360-024-05946-x
Regular Article
A study of the tunability of armchair graphene nano ribbon based device channels under spatially varying electric fields in quantum hall effect regime
Department of Physics, Birla Institute of Technology and Science Pilani, Pilani-Campus, Pilani, Rajasthan, India
a
niladri@pilani.bits-pilani.ac.in
Received:
8
October
2024
Accepted:
27
December
2024
Published online:
9
January
2025
Studies are performed to investigate the flexibility of Armchair Graphene Nano Ribbon (AGNR) based nanoscale channels for electronic and spintronic devices. The role of the spatially varied Electric fields on the bandstructures, Local Density of States (LDOS), Landau Levels, and the Transmission functions of AGNR channels are studied under the Quantum Hall Effect (QHE) regime. Here, the electric potential across the transverse direction is modulated sinusoidally. Also, the electric field is spatially varied exponentially and hyperbolically across the transverse direction. The nature of the Quantum Landau levels(QLLs) show variations in the sub-bands that collapse for constant, exponential, and hyperbolic electric fields and show an oscillatory nature for the sinusoidal field. This is also reflected in the LDOS plots, which change due to the intermixing of the sub-bands and spatial variation of the transverse electric fields. This intermixing of the QLLs sub-bands suppresses the QHE regime’s cyclotron motion. Hence, applying electric and magnetic fields provides a picture of the tunability of AGNR channels.
Copyright comment Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
© The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2025
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.