https://doi.org/10.1140/epjp/s13360-024-05144-9
Regular Article
Muon/pion identification at BESIII based on variational quantum classifier
1
Shandong University, 266237, Qingdao, Shandong, People’s Republic of China
2
Institute of High Energy Physics, 100049, Beijing, People’s Republic of China
Received:
26
January
2024
Accepted:
30
March
2024
Published online:
26
April
2024
In collider physics experiments, particle identification (PID), i.e., the identification of the charged particle species in the detector is usually one of the most crucial tools in data analysis. In the past decade, machine learning techniques have gradually become one of the mainstream methods in PID, usually providing superior discrimination power compared to classical algorithms. In recent years, quantum machine learning (QML) has bridged the traditional machine learning and the quantum computing techniques, providing further improvement potential for traditional machine learning models. In this work, targeting at the discrimination problem at the BESIII experiment, we developed a variational quantum classifier (VQC) with nine qubits. Using the IBM quantum simulator, we studied various encoding circuits and variational ansatzes to explore their performance. Classical optimizers are able to minimize the loss function in quantum-classical hybrid models effectively. A comparison of VQC with the traditional multiple layer perception neural network reveals they perform similarly on the same datasets. This illustrates the feasibility to apply quantum machine learning to data analysis in collider physics experiments in the future.
Copyright comment Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
© The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.