https://doi.org/10.1140/epjp/s13360-024-04864-2
Regular Article
Molecular excited state in the interaction quench dynamics of two different atoms in a two-dimensional anisotropic trap
1
Institute of Nuclear Physics, 050032, Almaty, Kazakhstan
2
Al-Farabi Kazakh National University, 050040, Almaty, Kazakhstan
3
Satbayev university, 050013, Almaty, Kazakhstan
Received:
12
August
2023
Accepted:
4
January
2024
Published online:
16
January
2024
We explore the interaction quench dynamics of two atoms with different masses and subject to different trapping potentials. Notably, under such anisotropic conditions, the nonequilibrium dynamics can lead to the occupation of molecular excited states. We consider cases of quenching from attractive to repulsive interaction and vice versa, analyzing the impact of the pre- and postquench states. The analysis of overlap integrals for the both states reveals a significant contribution from the molecular excited state. Moreover, the overlap with the prequench states might serve as an approximate indicator of when this excited state may emerge. Additionally, we calculate the energy spectrum for the lowest levels in the both isotropic and anisotropic harmonic traps. Throughout our study, we use a Gaussian-shaped finite-range interaction potential.
Copyright comment Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
© The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.