https://doi.org/10.1140/epjp/s13360-023-04853-x
Regular Article
Gauss-bonnet modification to Hawking evaporation of AdS black holes in massive gravity
Center for Gravitation and Cosmology, College of Physical Science and Technology, Yangzhou University, 225009, Yangzhou, China
Received:
24
October
2023
Accepted:
29
December
2023
Published online:
22
January
2024
The Stefan-Boltzmann law can estimate particle emission power and lifetime of a black hole. However, in modified gravity theories, new parameters in the action can cause qualitative changes in thermodynamic quantities, thus obtaining specific thermodynamic properties often requires complicated calculation with higher degree equations. In this work, we aim to provide a general model-independent description of the evolution of AdS black holes, using Gauss-Bonnet massive gravity as an example. We prove that the impact factor of an infinitely large AdS black hole is equal to the effective AdS radius, and the black hole is able to evaporate an infinite amount of mass in finite time, so that the lifetime of the black hole depends on the final state temperature in the evaporation process. The black hole will evaporate out when the final state temperature diverges and will transform into a remnant when the temperature is zero. Since we have analyzed massive gravity in detail, we can introduce the Gauss-Bonnet term to study how it affects the thermodynamic quantities. We obtain the final states for different parameter intervals, study the qualitative properties of black hole evaporation, and classify the associated cases. This method can also be applied to other models.
Copyright comment Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
© The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.