https://doi.org/10.1140/epjp/s13360-023-04798-1
Regular Article
Optimized film thicknesses for maximum refractive index sensitivity and figure of merit of a bimetallic film surface plasmon resonance sensor
Department of Physics, Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava-Poruba, Czech Republic
Received:
7
October
2023
Accepted:
13
December
2023
Published online:
3
January
2024
In this paper, a simple surface plasmon resonance (SPR) optical sensor with a bimetallic gold-silver film is proposed and its parameters are optimized based on reflectance spectra analysis. In comparison with most SPR sensors, which use single gold films, the evanescent field of this bimetallic configuration at the analyte–metal interface enables the sensing with substantially enhanced refractive index (RI) sensitivity and figure of merit (FOM). The proposed structure comprising a BK7 glass substrate, an adhesion layer of chromium, a gold-silver plasmonic layer, and a protective layer of silicon dioxide is employed in the Kretschmann configuration for liquid analyte sensing. In order to achieve the best sensing properties, the gold-silver layer thickness ratio is varied, and a thorough analysis of reflectance spectra is performed based on RI sensitivity and FOM. For this purpose, a liquid analyte of aqueous solutions of NaCl is employed for angles of incidence 63 and 64, respectively. Moreover, based on the analysis, an optimized gold-silver layer thickness ratio is selected, and a sensitivity of 41,592 nm per RI unit (RIU) and FOM of 424 RIU are reached. The designed bimetallic SPR structure proves to be advantageous compared to single-gold-film structures employed for sensing applications.
Copyright comment corrected publication 2024
© The Author(s) 2024. corrected publication 2024
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.