https://doi.org/10.1140/epjp/s13360-023-04572-3
Review
Foundations of radiological protection in space: the integrated multidisciplinary approach for next manned missions in deep space
1
Radioprotection Institute (IRP), ENEA, Via Anguillarese 301, 00123, Rome, Italy
2
Agenzia Spaziale Italiana ASI, Via Del Politecnico snc, 00133, Rome, Italy
3
Physics Department, University of Tor Vergata, Via della Ricerca Scientifica 1, 00133, Rome, Italy
Received:
13
June
2023
Accepted:
27
September
2023
Published online:
10
November
2023
Future manned missions in deep space toward Moon and Mars represent one of the greatest challenges for radiological protection, which task is to mitigate risks for human life raised by the hostile space radiation environment. The prolonged exposure of astronauts to cosmic rays, mainly ion fields of galactic or solar origin, with a large dynamical behavior in time and space with a wide range of kinetic energies, may result in an unacceptable life risk for the next deep space manned missions. Indeed, these ions can deliver significant doses to astronauts by directly hitting human tissues as well as exposing them to secondary particles (neutron and high-LET nuclear fragments) produced by their interaction with space habitat materials. This radiation environment is very different from work environments on Earth, for example, in nuclear power plants or nuclear medicine departments, for which radioprotection was historically developed. Workers on Earth are mainly exposed to photons (-rays and -rays), to - and -particles and neutrons, with lower energies than those in space. This difference marks a significant change in the methodological approach of the radioprotection in space compared to that on ground. The review presents the basic principles of radiation protection in space compared to that on ground and the strategies that must be implemented to mitigate risks in manned missions. In particular, the principles of the integrated multidisciplinary approach proposed by NASA and other space agencies for human space exploration are also discussed, with emphasis on the synergies among the various countermeasures proposed.
© The Author(s) 2023
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.