https://doi.org/10.1140/epjp/s13360-023-04500-5
Regular Article
Nonlinear diffusive shock acceleration of cosmic rays: quasi-thermal and non-thermal particle distributions
Department of Astronomy, Faculty of Mathematics, University of Belgrade, Studentski trg 16, 11000, Belgrade, Serbia
a
bojan.arbutina@matf.bg.ac.rs
Received:
15
March
2023
Accepted:
15
September
2023
Published online:
28
September
2023
Diffusive shock acceleration (DSA) of particles at collisionless shocks is the major accepted paradigm about the origin of cosmic rays (CRs). As a theory, it was developed during the late 1970s in the so-called test-particle case. If one considers the influence of CR particles at shock structure, then we are talking about nonlinear DSA. We use semi-analytical Blasi’s model of nonlinear DSA to obtain non-thermal spectra of both protons and electrons, starting from their quasi-thermal spectra for which we assumed the -distribution, a commonly observed distribution in out-of-equilibrium space plasmas. We treated more carefully than in the previous work the jump conditions at the subshock and included electron heating, resonant and, additionally, non-resonant magnetic field instabilities produced by CRs in the precursor. Also, corrections for escaping flux of protons and synchrotron losses of electrons have been made.
Copyright comment Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
© The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.