https://doi.org/10.1140/epjp/s13360-023-04363-w
Regular Article
Unified trade-off optimization of one-qubit Novikov heat engines
Fisica Fundamental, UNED, P. Senda del Rey, 28040, Madrid, Madrid, Spain
Received:
26
April
2023
Accepted:
8
August
2023
Published online:
1
September
2023
We study the similarities and differences between one-qubit Novikov quantum heat engines and classic Novikov heat engines. We find that they have similar power-efficiency curves but very different ecological function-efficiency curves. Our analysis shows that in quantum engines the maximum values of the power and ecological function, and the efficiencies at which they are produced depend on the thermal couplings and the energy of the qubit inducing the heat flux that makes the engine to work. We analyze the high-temperature limit of the quantum engines to understand better the similarities and differences between the classic and quantum Novikov heat engines.
Copyright comment Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
© The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.