https://doi.org/10.1140/epjp/s13360-023-04272-y
Regular Article
Jaynes’ principle for quantum Markov processes: generalized Gibbs–von Neumann states rule
Department of Physics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 115 19 Praha 1 - Staré Město, Prague, Czech Republic
a
jaroslav.novotny@fjfi.cvut.cz
Received:
24
April
2023
Accepted:
10
July
2023
Published online:
27
July
2023
We prove that any asymptotics of a finite-dimensional quantum Markov processes can be formulated in the form of a generalized Jaynes’ principle in the discrete as well as in the continuous case. Surprisingly, we find that the open-system dynamics does not require maximization of von Neumann entropy. In fact, the natural functional to be extremized is the quantum relative entropy and the resulting asymptotic states or trajectories are always of the exponential Gibbs-like form. Three versions of the principle are presented for different settings, each treating different prior knowledge: for asymptotic trajectories of fully known initial states, for asymptotic trajectories incompletely determined by known expectation values of some constants of motion and for stationary states incompletely determined by expectation values of some integrals of motion. All versions are based on the knowledge of the underlying dynamics. Hence, our principle is primarily rooted in the inherent physics and it is not solely an information construct. The found principle coincides with the MaxEnt principle in the special case of unital quantum Markov processes. We discuss how the generalized principle modifies fundamental relations of statistical physics.
Copyright comment Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
© The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.