https://doi.org/10.1140/epjp/s13360-023-04197-6
Regular Article
The effect of position-dependent effective mass on the optical properties of a spherical quantum dot confined in inverse square root truncated and deformed exponential potential
Department of Physics, Akdeniz University, 07058, Antalya, Türkiye
Received:
4
April
2023
Accepted:
15
June
2023
Published online:
30
June
2023
In this work, we present a study of the bound-state energy levels and optical transitions of a quantum dot confined in an inverse square root truncated and deformed exponential potential. Our study aims to analyze the influence of position-dependent effective mass, chosen as modified exponential mass and Woods–Saxon mass, and the shapes of the confined potential on the energy eigenvalues, absorption coefficients, and refractive index change of an electron in a typical GaAs semiconductor, specifically for a two-level optical transition. To achieve this, we solve the Schrödinger equation numerically using the Runge–Kutta method. Our findings indicate that the spatial variation in the position-dependent masses and confinement potential plays a significant role in determining the absorption coefficients and total refractive index changes.
K. Bayrak, D. Kaya, O. Bayrak contributed equally to this work.
Copyright comment Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
© The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.