https://doi.org/10.1140/epjp/s13360-023-04077-z
Regular Article
To study the effect of ER flux with buffer on the neuronal calcium
Department of Mathematics, Pandit Deendayal Energy University, 382007, Gandhinagar, Gujarat, India
Received:
10
March
2023
Accepted:
7
May
2023
Published online:
5
June
2023
Calcium signaling is decisive for cellular functions. This calcium random walk stipulates neuronal functions. Calcium concentration could provoke gene transcription, apoptosis, neuronal plasticity, etc. A malformation in calcium could change the neuron’s intracellular behavior. Calcium concentration balancing is a complex cellular mechanism. This occurrence can be handled with the Caputo fractional reaction–diffusion equation. In this mathematical modeling, we have included the STIM-Orai mechanism and Endoplasmic Reticulum (ER) flux, Inositol Triphosphate Receptor (IPR), SERCA, plasma membrane flux, voltage-gated calcium entry, and different buffer interactions. A hybrid integral transform and Green’s function approach were taken to solve the initial boundary problem. A closed-form solution of a Mittag-Leffler family function plotted using MATLAB software. Different parameters impact changes in the spatiotemporal behavior of the calcium concentration. Specific roles of organelles involved in Alzheimer’s disease-affected neurons are computed. Ethylene glycol tetraacetic acid (EGTA), 1,2-bis(o-aminophenoxy)ethane N,N,N,N-tetraacetic acid (BAPTA), and S100B protein effects are also observed. In all simulations, we can say S100B and the STIM-Orai effect cannot be neglected. This model lights up the different approaches for calcium signaling pathway simulation. As a consequence, we determine that a generalized reaction–diffusion approach is a better fit realistic model.
Brajesh Kumar Jha and Tajinder Pal Singh authors contributed equally to this work.
Copyright comment Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
© The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.