https://doi.org/10.1140/epjp/s13360-023-04128-5
Regular Article
Mathematical model and artificial intelligence for diagnosis of Alzheimer’s disease
1
Department of Mathematics, Central Tehran Branch, Islamic Azad University, Tehran, Iran
2
Department of Mathematics, North Tehran Branch, Islamic Azad University, Tehran, Iran
3
Department of Mathematics, South Tehran Branch, Islamic Azad University, Tehran, Iran
Received:
31
March
2023
Accepted:
22
May
2023
Published online:
29
May
2023
Degeneration of the neurological system linked to cognitive deficits, daily living exercise clutters, and behavioral disturbing impacts may define Alzheimer’s disease. Alzheimer’s disease research conducted later in life focuses on describing ways for early detection of dementia, a kind of mental disorder. To tailor our care to each patient, we utilized visual cues to determine how they were feeling. We did this by outlining two approaches to diagnosing a person’s mental health. Support vector machine is the first technique. Image characteristics are extracted using a fractal model for classification in this method. With this technique, the histogram of a picture is modeled after a Gaussian distribution. Classification was performed with several support vector machines kernels, and the outcomes were compared. Step two proposes using a deep convolutional neural network architecture to identify Alzheimer’s-related mental disorders. According to the findings, the support vector machines approach accurately recognized over 93% of the photos tested. The deep convolutional neural network approach was one hundred percent accurate during model training, whereas the support vector machines approach achieved just 93 percent accuracy. In contrast to support vector machines accuracy of 89.3%, the deep convolutional neural network model test findings were accurate 98.8% of the time. Based on the findings reported here, the proposed deep convolutional neural network architecture may be used for diagnostic purposes involving the patient’s mental state.
Copyright comment Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
© The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.