https://doi.org/10.1140/epjp/s13360-023-04107-w
Regular Article
On the complexity of the positron’s dynamics in a short carbon nanotube: a full explanation of the rainbow effect
Vinča Institute of Nuclear Sciences – National Institute of the Republic of Serbia, University of Belgrade, P.O.Box 522, Mihajla Petrovića Alasa 12-14, Belgrade, Serbia
Received:
14
March
2023
Accepted:
13
May
2023
Published online:
26
May
2023
This paper contains the results of the classical, uniform semiclassical, and quantum mechanical study of the channeling of 1 MeV positrons in a short (11, 9) chiral carbon nanotube. In the classical part of the study, we have analyzed the positron trajectories, which reveal the existence of the primary, secondary, and higher-order rainbow lines. The semiclassical part of the study has been performed with the incident positron represented as a plane wave, while in the fully quantum approach, by a wide Gaussian wave packet. In the former case, only the primary rainbow exists; in the latter, the higher-order rainbows also appear. The evolution of the semiclassical spatial distribution of channeled positrons reveals that rainbow and dislocation points are organized in lines. These points and lines are recognized in the evolution of the quantum spatial distribution of channeled positrons. In the quantum party of the study, special attention has been paid to the Bohm positron trajectories and their finite-time Lyapunov exponents. We demonstrate that the classical, semiclassical, and quantum rainbow effects are complex and catastrophic. These results explain entirely the rainbow effect in the positron transmission through the nanotube.
Copyright comment Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
© The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.