https://doi.org/10.1140/epjp/s13360-023-03941-2
Regular Article
Scattershot multiboson correlation sampling with random photonic inner-mode multiplexing
1
School of Math and Physics, University of Portsmouth, PO1 3QL, Portsmouth, UK
2
Institute of Cosmology and Gravitation, University of Portsmouth, PO1 3FX, Portsmouth, UK
3
Institut für Quantenphysik and Center for Integrated Quantum Science and Technology (IQST), Universität Ulm, 89069, Ulm, Germany
Received:
18
January
2023
Accepted:
24
March
2023
Published online:
17
April
2023
Multiphoton interference is an essential phenomenon at the very heart not only of fundamental quantum optics and applications in quantum information processing and sensing but also of demonstrations of quantum computational supremacy in boson sampling experiments relying only on linear optical interferometers. However, scalable boson sampling experiments with either photon number states or squeezed states are challenged by the need to generate a large number of photons with fixed temporal and frequency spectra from one experimental run to another. Unfortunately, even the well-established standard multiplexing techniques employed to generate photons with fixed spectral properties are affected by the detrimental effects of losses, spectral distorsions and reduction in purity. Here, we employ sampling correlation measurements in the photonic inner modes, time and frequency, at the interferometer input and output to ensure the occurrence of multiphoton interference even with pure states of input photons with random spectral overlap from one sample to another. Indeed, by introducing a random multiplexing technique where photons are generated with random inner-mode parameters, it is possible to substantially enhance the probability to successfully generate samples and overcome the typical drawbacks in standard multiplexing. We also demonstrate the classical hardness of the resulting problem of scattershot multiboson correlation sampling based on this technique. Therefore, these results not only shed new light in the computational complexity of multiboson interference but also allow us to enhance the experimental scalability of boson sampling schemes. Furthermore, this research provides a new exciting route toward future demonstrations of quantum computational supremacy with scalable experimental resources as well as future applications in quantum information processing and sensing beyond boson sampling.
© The Author(s) 2023
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.