https://doi.org/10.1140/epjp/s13360-023-03815-7
Review
UV divergence and tensor reduction
Graduate School of China Academy of Engineering Physics, No. 10 Xibeiwang East Road, 100193, Haidian District, Beijing, China
Received:
15
August
2022
Accepted:
15
February
2023
Published online:
28
February
2023
We present an efficient algorithm to decompose the ultraviolet (UV) divergences of Feynman integrals to local divergences and various types of sub-divergences. With some reasonable assumptions the local divergences of Feynman integrals can be uniquely defined in dimensional regularization scheme. By an asymptotic expansion in the hard momenta, the computation of local and sub-divergences is reduced to the computation of local divergences of massless vacuum integrals. In theories with spin , the beta functions and anomalous dimensions can be extracted directly from the local divergence of integrals. We also propose two methods to reduce the tensor structures which can be used in the computation of local divergence. The first method is based on dimensional shift and is extremely powerful for integrals with loop number
. The second method is based on a PV reduction in a
dimension subspace, and it is more suited in four and more loops.
© The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.