https://doi.org/10.1140/epjp/s13360-022-03625-3
Regular Article
Route to extreme events in a parametrically driven position-dependent nonlinear oscillator
Department of Physics, Centre for Nonlinear Science and Engineering, School of Electrical and Electronics Engineering, SASTRA Deemed University, 613 401, Thanjavur, India
Received:
22
September
2022
Accepted:
22
December
2022
Published online:
17
January
2023
We explore the dynamics of a damped and driven Mathews–Lakshmanan oscillator type model with position-dependent mass term and report two distinct bifurcation routes to the advent of sudden, intermittent large-amplitude chaotic oscillations in the system. We characterize these infrequent and recurrent large oscillations as extreme events (EE) when they are significantly greater than the pre-defined threshold height. In the first bifurcation route, the system exhibits a bifurcation from quasiperiodic (QP) attractor to chaotic attractor via strange non-chaotic (SNA) attractor as a function of damping parameter. In the second route, the chaotic attractor in the form of EE has emerged directly from the QP attractor. Hence, to the best of our knowledge, this is the first study to report the birth of EE from these two distinct bifurcation routes. We also discuss that EE are emerged due to the sudden expansion of the chaotic attractor via interior crisis in the system. Regions of different dynamical states are distinguished using the Lyapunov exponent spectrum. Further, SNA and QP dynamics are determined using the singular spectrum analysis and 0–1 test. The region of EE is characterized using the threshold height.
Copyright comment Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
© The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.