https://doi.org/10.1140/epjp/s13360-022-03512-x
Regular Article
Nonlocal classical theory of gravity: massiveness of nonlocality and mass shielding by nonlocality
1
Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, 119991, Moscow, Russia
2
Department of Physics, 915, Moscow Aviation Institute (National Research University), 125993, Moscow, Russia
Received:
25
July
2022
Accepted:
18
November
2022
Published online:
12
December
2022
Nonlocal generalization of classical (Newtonian) gravity field theory is proposed by using the general fractional calculus in the Luchko form. Nonlocal analogs of the standard Gauss’s law and the “local” potentiality of gravitational field are suggested in integral and differential forms. Nonlocality is described by the pairs of Sonin kernels that belong to the Luchko set. The general fractional vector calculus, which can be considered as nonlocal vector calculus, is used as a mathematical tool for formulation of nonlocal field theory. General fractional (GF) vector operators, such as GF flux, GF circulation, GF divergence, GF curl operators and GF gradient are defined to describe nonlocalities in space. Examples of using the general nonlocal Gauss’s law to calculate gravity fields are proposed for the case of spherically symmetric nonlocality and mass distribution. The nonlocal effects caused by nonlocality in space are discussed. Among such effects, the following effects are described: effects of mass shielding by nonlocality, violation of local potentiality by nonlocality, and violation of local solenoidality by nonlocality (massiveness of nonlocality). A possibility of using the nonlocal theory of gravity to explain some nonstandard properties of dark matter and dark energy through the properties of nonlocality is discussed.
© The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.