https://doi.org/10.1140/epjp/s13360-022-03396-x
Regular Article
Study on generalized fuzzy fractional human liver model with Atangana–Baleanu–Caputo fractional derivative
Department of Mathematics and Humanities, S.V. National Institute of Technology, 395007, Surat, India
Received:
6
September
2022
Accepted:
14
October
2022
Published online:
11
November
2022
This study aims to develop a novel fuzzy fractional model for the human liver that incorporates the ABC fractional differentiability, also known as ABC gH-differentiability, based on the generalized Hukuhara derivative. In addition, a novel fuzzy double parametric q-homotopy analysis method with a generalized transform and ABC gH-differentiability is used to deal with the fuzzy mathematical model and examine its convergence analysis. The stability of the unique equilibrium point for the fuzzy fractional human liver model and the existence of a unique solution in the proposed model are investigated using the Arzela–Ascoli theorem and Schauder’s fixed-point theory. Some numerical experiments are conducted to visualize better results and test the proposed method’s efficacy. The results of the q-HAShTM employing the presented approaches coincide with most of the clinical data, providing it more precise and superior to the generalized Mittag–Leffler function method.
Copyright comment Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
© The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.