https://doi.org/10.1140/epjp/s13360-022-03384-1
Regular Article
First steps of planet formation around very low mass stars and brown dwarfs
1
Mullard Space Science Laboratory, University College London, Holmbury St Mary, Dorking, London, UK
2
Planet and Star Formation Department, Max-Planck-Institut für Astronomie, Königstuhl 17, Heidelberg, Germany
Received:
17
June
2022
Accepted:
8
October
2022
Published online:
2
November
2022
Brown dwarfs and very low mass stars are a significant fraction of stars in our galaxy and they are interesting laboratories to investigate planet formation in extreme conditions of low temperature and densities. In addition, the dust radial drift of particles is expected to be a more difficult barrier to overcome during the first steps of planet formation in these disks. ALMA high-angular resolution observations of few protoplanetary disks around BDs and VLMS have shown substructures as in the disks around Sun-like stars. Such observations suggests that giant planets embedded in the disks are the most likely origin of the observed substructures. However, this type of planets represent less than 2% of the confirmed exoplanets so far around all stars, and they are difficult to form by different core accretion models (either pebble or planetesimal accretion). Dedicated deep observations of disks around BDs and VLMS with ALMA and JWST will provide significant progress on understanding the main properties of these objects (e.g., disk size and mass), which is crucial for determining the physical mechanisms that rule the evolution of these disks and the effect on the potential planets that may form in these environments.
© The Author(s) 2022
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.