https://doi.org/10.1140/epjp/s13360-022-03346-7
Regular Article
Supersolid-like square- and triangular-lattice crystallization of dipolar droplets in a box trap
1
Grupo de Modelado Computacional, Facultad de Ciencias Exactas y Naturales, Universidad de Cartagena, 130014, Cartagena, Bolivar, Colombia
2
Instituto de Física Teórica, UNESP - Universidade Estadual Paulista, 01140-070, São Paulo, São Paulo, Brazil
Received:
7
September
2022
Accepted:
30
September
2022
Published online:
19
October
2022
Using a beyond-mean-field model including a Lee-Huang-Yang-type interaction, we demonstrate a supersolid-like spatially-periodic square- and triangular-lattice crystallization of droplets in a polarized dipolar condensate confined by an appropriate three-dimensional (3D) box trap. In this paper, we consider a rectangular box (cuboid) trap, a square box (cuboid with two equal sides) trap, a cylindrical box trap and a hexagonal box (hexagonal prism) trap. The droplet lattice is always formed in the x-y plane perpendicular to the polarization z direction of dipolar atoms. In contrast to a harmonic trap, the box traps allow the formation of a large clean supersolid-like spatially-periodic crystallization in free space without any distortion. Moreover, a droplet lattice can be formed in a 3D box trap with a significantly reduced number of atoms than in a harmonic trap, which could facilitate the experimental observation of droplet lattice in a box trap. With present know-how such a supersolid-like crystallization of dipolar droplets in a 3D box trap can be realized in a laboratory thus allowing the study of a large periodic lattice of dipolar droplets in free space bounded by rigid walls.
Copyright comment Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
© The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.