https://doi.org/10.1140/epjp/s13360-022-03211-7
Regular Article
Structural stabilities, mechanical and thermodynamic properties of chalcogenide perovskite ABS3 (A = Li, Na, K, Rb, Cs; B = Si, Ge, Sn) from first-principles study
Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, 62511, Beni-Suef, Egypt
Received:
5
May
2022
Accepted:
18
August
2022
Published online:
6
September
2022
In this study, first-principles calculations have been used to study the mechanical and thermodynamic properties of chalcogenide perovskite ABS3 (A = Li, Na, K, Rb, Cs; B = Si, Ge, Sn) in the triclinic phase. The structural stabilities of perovskite were investigated through Goldschmidt’s tolerance factor (t) and phonon dispersion. It was indicated that all of the investigated materials construct stable perovskite structures. The mechanical properties of chalcogenide perovskites ABS3 were systematically investigated by density functional theory (DFT). The DFT method was considered within the meta-generalized gradient approximation revTPSS. The elastic properties of materials give the data necessary in understanding the bonding property between adjacent atomic planes, stiffness, bonding anisotropic, and structural stability of the material. The independent elastic constants Cij have been used for the prediction of mechanical properties like bulk modulus (B), Shear modulus (G), Young’s modulus (E) Poisson’s ratio (ν), and the universal anisotropic index (AU). The mechanical stability, brittleness, and ductility behaviors of materials were discussed. The covalent, ionic, and metallic nature of the materials were also discussed. The thermodynamic parameters including heat capacity, entropy, enthalpy, and free energy were also computed and discussed with a wide range of temperatures (0–1000 K).
Supplementary Information The online version contains supplementary material available at https://doi.org/10.1140/epjp/s13360-022-03211-7.
© The Author(s) 2022
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.