https://doi.org/10.1140/epjp/s13360-022-03128-1
Regular Article
Research on the exotic properties of nuclei from the light to medium mass region
1
School of Management Science and Engineering, Anhui University of Finance and Economics, 233030, Bengbu, China
2
School of Physics and Optoelectronics Engineering, Anhui University, 230601, Hefei, China
Received:
5
June
2022
Accepted:
29
July
2022
Published online:
9
August
2022
The relativistic point-coupling model combined with complex momentum representation method (RMFPC-CMR method) is used to investigate the exotic phenomena in the neutron-rich Si, S, Ar, Ti, Cr, and Fe isotopes. The calculated two-neutron separation energies are compared with the relativistic Hartree–Bogoliubov calculations as well as the available experimental data. It is found that the new magic number appears in Si and S isotopes and the traditional magic numbers (in Si isotopes) and 50 (in Si, S, Ar, and Ti isotopes) disappear. In addition, the calculated single-particle energies and occupation probabilities of the bound and resonant states support the results and indicate that a neutron halo may occur on the neutron-rich side of Ti, Cr, and Fe isotopes. We also calculate the density distributions of neutrons and protons, and the ratios of the densities of the single-particle levels to the total neutron density. The results show that Ti (), Cr (), and Fe () isotopes are possible halo nuclei, while Si, S, and Ar isotopes prefer to neutron skin. The prediction on the structure of halo and skin in the neutron-rich Si, S, Ar, Ti, Cr, and Fe isotopes are of referential value for experiment.
Copyright comment Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
© The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.