https://doi.org/10.1140/epjp/s13360-022-02929-8
Regular Article
Non-monotonic dependence of heat loads induced by electron cloud on bunch population at the LHC
1
CERN, 1211, Geneva, Switzerland
2
Joint Institute for Nuclear Research (JINR), 141980, Dubna, Russia
Received:
3
March
2022
Accepted:
7
June
2022
Published online:
22
July
2022
Electron cloud effects are among the main performance limitations for the operation of the Large Hadron Collider with 25 ns bunch spacing. Electrons impacting on the beam screens of the superconducting magnets induce a significant heat load reaching values close to the full cooling capacity available from the cryogenic system in some LHC sectors. To better understand this performance limitation, numerical simulations with the PyECLOUD code were performed to study the dependence of the heat load on different beam and machine parameters, in particular the bunch population, which is foreseen to be considerably increased with the impending HL-LHC upgrade. The simulations predict a complex, non-monotonic behavior of the heat load with bunch population which has important implications in defining the upgrade of the cryogenic system required for coping with HL-LHC beam intensities. An in-depth analysis of the simulation results shows that the non-monotonic dependence of the heat load on the bunch population is driven by an interplay between the spectrum of the impacting electrons and the shape of the Secondary Electron Yield curve. Experimental data were collected at the LHC during normal operation and dedicated experiments in order to validate the simulation model and confirm the expected non-monotonic behavior. The simulation results are found to reproduce very well the measurement data.
© The Author(s) 2022
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.