https://doi.org/10.1140/epjp/s13360-022-02475-3
Regular Article
Weakly interacting Bose gases with generalized uncertainty principle: Effects of quantum gravity
Department of Physics, Faculty of Exact Sciences and Informatics, Hassiba Benbouali University of Chlef, P.O. Box 78, 02000, Ouled-Fares, Chlef, Algeria
Received:
4
October
2021
Accepted:
12
February
2022
Published online:
22
February
2022
We investigate quantum gravity corrections due to the generalized uncertainty principle on three-dimensional weakly interacting Bose gases at both zero and finite temperatures using the time-dependent Hatree–Fock–Bogoliubov theory. We derive useful formulas for the depletion, the anomalous density, and some thermodynamic quantities such as the chemical potential, the ground-state energy, the free energy, and the superfluid density. It is found that the presence of a minimal length leads to modify the fluctuations of the condensate and its thermodynamic properties in the weak and strong quantum gravitational regimes. Unexpectedly, the interplay of quantum gravity effects and quantum fluctuations stemming from interactions may lift both the condensate and the superfluid fractions. We show that quantum gravity minimizes the interaction force between bosons leading to the formation of ultradilute Bose condensates. Our results which can be readily probed in current experiments may offer a new attractive possibility to understand gravity in the framework of quantum mechanics.
© The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2022