https://doi.org/10.1140/epjp/s13360-021-02284-0
Regular Article
Hydrodynamic behaviour of velocity of applied magnetic field on unsteady MHD Couette flow of dusty fluid in an annulus
1
Department of Mathematics, Ahmadu Bello University, Zaria, Nigeria
2
Department of Mathematics and Statistics, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
Received:
6
October
2021
Accepted:
10
December
2021
Published online:
27
December
2021
This research work inspects mass transport phenomenon of Saffman’s dusty fluid model for transient magnetohydrodynamics fluid flow of a binary mixture passing through an annular duct. Particularly, effort has been devoted to theoretically explore the role of velocity of applied magnetic field. Here, our treatment of the governing momentum equations accountable for the flow is done using the classical Laplace transform technique and Riemann-Sum Approximation. The effects of the physical parameters such as time, relaxation time parameter, radii ratio, Hartmann number, variable mass parameter and velocity of applied magnetic field on the fluid phase velocity, dust phase velocity and skin friction have been illustrated pictorially. It is concluded that contrary to the known classical effect of boosting Hartmann number on velocity, both components of flow (fluid and dust phase) and skin friction are seen to be heightened with an overwhelming presence of velocity of applied magnetic field. For large time, it is anticipated that higher profiles for velocity and skin friction are seen with fluid phase and an accelerated moving wall.
© The Author(s) 2021
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.