https://doi.org/10.1140/epjp/s13360-021-02222-0
Regular Article
A new and gauge-invariant littlest Higgs model with T-parity
CAFPE and Departamento de Física Teórica y del Cosmos, Universidad de Granada, 18071, Granada, Spain
Received:
28
July
2021
Accepted:
26
November
2021
Published online:
20
December
2021
We inspect the Littlest Higgs model with T-parity, based on a global symmetry SU(5) spontaneously broken to SO(5), in order to elucidate the pathologies it presents due to the non-trivial interplay between the gauge invariance associated to the heavy modes and the discrete T-parity symmetry. In particular, the usual Yukawa Lagrangian responsible for providing masses to the heavy ‘mirror’ fermions is not gauge invariant. This is because it contains an SO(5) quintuplet of right-handed fermions that transforms nonlinearly under SU(5), hence involving in general all SO(5) generators when a gauge transformation is performed and not only those associated to its gauge subgroup. Part of the solution to this problem consists of completing the right-handed fermion quintuplet with T-odd ‘mirror partners’ and a gauge singlet, what has been previously suggested for other purposes. Furthermore, we find that the singlet must be T-even, the global symmetry group must be enlarged, an additional nonlinear sigma field should be introduced to parametrize the spontaneous symmetry breaking and new extra fermionic degrees of freedom are required to give a mass to all fermions in an economic way while preserving gauge invariance. Finally, we derive the Coleman–Weinberg potential for the Goldstone fields using the background field method.
© The Author(s) 2021
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.