https://doi.org/10.1140/epjp/s13360-021-02115-2
Regular Article
Muon detection at FCC-ee
1
INFN, Sezione di Bologna, Viale Berti Pichat 6/2, 40127, Bologna, Italy
2
Dipartimento di Fisica e Astronomia, University of Bologna, Viale Berti Pichat 6/2, 40127, Bologna, Italy
Received:
5
May
2021
Accepted:
23
October
2021
Published online:
15
November
2021
Muons provide a clean experimental signature, typically traversing the whole experimental apparatus without decaying. Muon detection systems are therefore usually located at a rather large distance from the primary interaction vertex after all other sub-detectors. As such, experimental apparatuses at FCC-ee will certainly employ very large muon systems, covering areas of a few thousand square meters. For obvious reasons of cost, the most suitable detectors to realise these large muon systems are gas detectors. In particular, in recent years, micro-pattern gas detectors (MPGDs) have undergone very interesting developments, providing several new types of detectors with very good spatial and time resolution, high efficiency, high rate capability and high radiation tolerance. The good position and time resolution makes a MPGD an excellent particle tracker, reconstructing tracks at 4–5 m from the primary interaction vertex with sub-mm precision. Therefore MPGDs, apart from efficiently detecting muons, can precisely track and help identifying also hypothesized long lived particles (LLP) that would decay outside of the central trackers. MPGDs have the distinct advantage of being, at least for some detectors and some parts of them, mass-producible by industry, since they employ materials and manufacturing procedures that are used extensively for printed circuit boards (PCB) production. A particularly innovative MPGD, the RWELL, is considered as a possible candidate to build the large muon system of the IDEA detector concept for FCC-ee and is described in some more detail. Other technologies that could be considered for the realisation of muon detection systems are also briefly discussed.
The original online version of this article was revised to add additional funding information.
A correction to this article is available online at https://doi.org/10.1140/epjp/s13360-022-02959-2.
Copyright comment corrected publication 2022
© The Author(s) 2021. corrected publication 2022
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.