https://doi.org/10.1140/epjp/s13360-021-02060-0
Regular Article
Ion–electron energy transfer in kinetic and fluid modelling of the tokamak scrape-off layer
1
Blackett Lab., Plasma Physics Group, Imperial College London, SW7 2AZ, London, UK
2
CCFE, Culham Science Centre, Abingdon, OX14 3BD, Oxon, UK
Received:
5
January
2021
Accepted:
11
October
2021
Published online:
2
November
2021
Using the 1D kinetic electron code SOL-KiT, simulations of the divertor tokamak scrape-off layer were carried out to explore the presence of kinetic effects in energy transfer between the ions and electrons. During steady-state conditions, it was found that the ion–electron energy transfer is well described by a fluid model, with only minimal differences seen when electrons are treated kinetically. During transient regimes (featuring a burst of energy into the scrape-off layer), we see evidence of enhanced energy exchange when calculated kinetically as compared to a fluid model. The kinetic correction represents an additional 8–55% ion–electron energy transfer across the domain, depending on the pre-transient plasma collisionality. Compared to the total energy going into the plasma during the transient, the correction is less than 1%, so its impact on plasma profiles may be small. The effect is seen to increase in strength along the domain, peaking in front of the divertor target. The overall discrepancy (integrated along the domain) increases during the transient energy burst and disappears on a similar timescale. However, at the target the effect peaks later and takes several multiples of the transient duration to relax. This effect may be only partially explained by an additional population of cold electrons arising from neutral ionization.
© The Author(s) 2021
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.